Linear and exponential growth

 $12~{
m grams}~({
m g})$ of a chemical are added to a metal. The amount A, in grams, of the chemical remaining during a reaction with a metal plate decreases by $0.5~{
m g}$ per second. If instead the plate were dissolved, the amount \hat{A} , in grams, of chemical remaining would decrease by half of itself every $4~{
m seconds}$. How many grams greater is $A~{
m than}~\hat{A}$ after $12~{
m seconds}$?

$w \mid$	1	2	4	8	16	32
$C \mid$	30	60	120	240	480	960

Laxman recently started a restaurant 32 weeks ago. The table above shows the number of customers, C, during the $w^{\rm th}$ week. Which of the following correctly explains the growth of C with respect to w?

- The number of customers per week grew exponentially because the number of customers per week increased by approximately 30 every week.
- The number of customers per week grew exponentially because the number of customers per week increased by approximately 100 percent every week.

An old computer program which computes the $n^{\rm th}$ Fibonacci number takes 0.05 microseconds $(\mu {\rm s})$ to compute the $1^{\rm st}$ number. After this, each number takes twice as long as the previous number to compute. A computer engineer designs a new program which takes $0.8~\mu {\rm s}$ to compute the $1^{\rm st}$ Fibonacci number. After this, each number takes $0.6~\mu {\rm s}$ longer than the previous number to compute. How much longer in microseconds does it take the old program to compute the $8^{\rm th}$ Fibonacci number compared to the new program?

Linear and exponential growth

$$s = 320 + 115t$$

The equation above approximates the relationship wildlife veterinarians found between the amount t of cortisol (a stress hormone), in micrograms per deciliter $\left(\frac{\mu g}{dl}\right)$, in a wild harbor seal's tears to the amount s of cortisol, in $\frac{\mu g}{dl}$, in the seal's serum. Which of the following statements best describes the relationship between the amount of cortisol in a seal's tears and serum?

- A It is linear because there is an $11.5\,rac{\mu\mathrm{g}}{\mathrm{dl}}$ increase in s for every $0.1rac{\mu\mathrm{g}}{\mathrm{dl}}$ increase in t.
- B It is linear because there is a $32\,rac{\mu {
 m g}}{{
 m dl}}$ increase in s for every $0.1rac{\mu {
 m g}}{{
 m dl}}$ increase in t.
- It is exponential because there is a 15% increase in s for every $0.01\frac{\mu g}{dl}$ increase in t.
- It is exponential because there is a 220% increase in s for every $0.01\frac{\mu \mathrm{g}}{\mathrm{dl}}$ increase in t.

$$r = 35.7 + 1.37t$$

The equation above relates the urbanization rate r, as a percent, in a particular country to the number of years t since 2000. Which of the following statements best describes the relationship between the years since 2000 and the urbanization rate?

- $oxed{\mathbb{A}}$ It is linear because the urbanization rate increases by 35.7 each year.
- f B It is linear because the urbanization rate increases by 1.37 each year.
- $oxed{c}$ It is exponential because the urbanization rate increases by 37% each year.
- It is exponential because the urbanization rate increases by a factor of $35.7\,\mathrm{each}$ year.